US 6,563,504 B1

25

with different scalability tags are available to the projector
module 60. At runtime, the projector module 60 selects the
objects with the appropriate scalability tags.

For example, if the movie is distributed via a CD with a
CD build file including all of the objects created for the
movie, the projector module 60 scales the 3D graphics based
on the detected CPU speed. If the host computer 55 includes
a Pentium 166 processor, the projector module 60 selects the
objects tagged with a Base PC tag 200c. If the same CD is
played on a host computer 55 with a Pentium II processor,
the graphics displayed scales to the higher CPU speed and
includes additional graphics and/or higher resolution objects
tagged with a PII/266 tag 200d.

Normally, the runtime engine will load and play data
tagged with scalability flags that reasonably match the host
computer’s configuration. However, when doing an Internet
build, extra sets of scalability data may be culled out to
reduce the size of the download. For example a low band-
width Internet build might only include data tagged as Base
PC and Software rendering. At playback time the projector
module 60 detects, from extra header information in the
build, that the build only includes a limited set of scalability
data, and allows playback of this data even though it may not
match the current machine configuration.

F. DYNAMIC REPLACEMENT OF 3D OBIJECTS
IN A 3D PROJECT LIBRARY.

The system’s library structure as described above in
conjunction with FIGS. 2—4 allows a 3D object to be defined
as a library object and its geometry information be stored
outside a scene. During the playing of a scene, the projector
module 30 examines each node’s name and inquires if the
name corresponds to a root-node listed in the scene’s 3DS
file. If the answer is YES, the node belongs to a library
object. The projector module 30 then retrieves the corre-
sponding master library object file and compares the nodes
following the root-node in the scene for a match in the
master library object file. If a match is found, the geometry
data in the master library object file is used for that node.
Accordingly, updates to a 3D object may be made by
changing the object’s geometry in the library file instead of
making the change in each scene in which the object
appears.

According to one embodiment of the invention, the 3D
movie incorporates commercial products that are replaced
and updated based on the sponsorship available for the
product. For instance, the Coca-Cola company may pay
advertisement fees to have one of its products displayed in
one or more scenes of the movie. If, after inserting the
Coca-Cola product into the scenes, the Coca-Cola product is
to be replaced with a Pepsi-Cola product, the geometry data
for the object is changed in the master library object file
without having to manually make the changes in each scene
that the object appears. Thus, changes to the movie based on
sponsorship changes may be efficiently reflected through the
system’s library substitution method.

The present library substitution method, in conjunction
with the system’s method of file organization for Internet
streaming, also facilitates the transmission of updated ver-
sions of movies over the Internet. As described above in
conjunction with FIGS. 16-18, the publishing module 30
packages data to be delivered over the Internet into the
upfront file and one or more streaming files. The geometry
information associated with a 3D object is stored in the
upfront file. Thus, if a change to a 3D object’s geometry is
made in a movie that has already been downloaded by the

10

15

25

30

35

40

45

50

55

60

65

26

projector module 60, the projector module 60 needs not to
download the entire movie again. Instead, the projector
module 60 just downloads the upfront file with the new
geometry information. As described above, the projector
module 60 detects a change in the downloaded upfront file
by checking the file’s checksum number.

G. CONTROLLING 3D OBJECT GESTURES

The present system’s library structure as described above
in conjunction with FIGS. 2—4 also allows gesture anima-
tions to be defined within a master library object file. The
gesture animations are overlaid on top of a scene’s anima-
tion when triggered within the scene.

FIG. 17 is a flow process diagram of a software program
for processing gesture animations for a scene. The program
starts, and in step 280, inquires if there are any more
messages to process in the scene’s message file. If the
answer is YES, the program asks in step 282 if the message
is a gesture message. If the answer is again YES, the
program, in step 284, searches the corresponding master
library object file for the gesture tag corresponding to the
gesture.

In step 286, the program retrieves the keyframes associ-
ated with the gesture from the actor’s S3D file, and in step
288, merges the retrieved keyframes with the keyframes
created for the scene in the scene’s S3D file.

One type of gesture used in the system are lip-synch
gestures. FIG. 18 is a flow diagram of a software program
for creating audio and lip animation data for an actor for
lip-synching purposes. The program starts, and in step 300,
it records generic phonemes for an actor. In step 302, the
program stores the phonemes into -he sound subdirectory
207 of the project directory 205 (FIG. 5). In step 304, the
animator uses 3D Studio MAX to create lip gestures to
match the recorded phonemes.

Once the phonemes and corresponding lip gestures have
been created for the actor, the program, in step 306, records
a narration for the actor according to the movie script. The
audio recording is also stored in the sound subdirectory 207
as an audio file with a “.wav” extension. In step 308, the
program performs a lip-synch analysis of the audio file
according to conventional methods described, for instance,
in Juang et. al, Fundamentals of Speech Recognition
(Prentice Hall 1993), which is incorporated herein by ref-
erence. The program further creates a series of lip-synch
messages for the actor with gesture tags that correspond to
the phonemes in the audio file. The lip-synch gesture mes-
sages are stored in the sound subdirectory 207 as a lip-synch
file with a “.sync” extension. The lip-synch gestures in the
lip-synch file are triggered at run-time and overlaid on top of
a current scene’s animation.

What is claimed is:

1. Amethod for creating 3D animated content for multiple
target machines from a single production process, the ani-
mated content including a plurality of scenes, each scene
including a 3D object having a plurality of nodes, each node
identifying a discrete piece of 3D geometry making up the
3D object, the method comprising:

creating a first version of a node of the 3D object

identifying a first piece of 3D geometry data;
creating a second version of the node identifying a second
piece of 3D geometry data;

tagging each version of the node with a tag identifier, the

tag identifier identifying each version of the node as
suitable for display in a particular type of machine;

storing the first and second versions of the node in a

library model file, the library model file residing in a



